Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurol Int ; 15(4): 1253-1272, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37873836

RESUMO

Type 2 diabetes mellitus (T2D) is a metabolic disease reaching pandemic levels worldwide. In parallel, Alzheimer's disease (AD) and vascular dementia (VaD) are the two leading causes of dementia in an increasingly long-living Western society. Numerous epidemiological studies support the role of T2D as a risk factor for the development of dementia. However, few basic science studies have focused on the possible mechanisms involved in this relationship. On the other hand, this review of the literature also aims to explore the relationship between T2D, AD and VaD. The data found show that there are several alterations in the central nervous system that may be promoting the development of T2D. In addition, there are some mechanisms by which T2D may contribute to the development of neurodegenerative diseases such as AD or VaD.

2.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37240018

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with unknown etiology. Many metabolic alterations occur during ALS progress and can be used as a method of pre-diagnostic and early diagnosis. Dyslipidemia is one of the physiological changes observed in numerous ALS patients. The aim of this study is to analyze the possible relationship between the rate of disease progression (functional rating scale (ALS-FRS)) and the plasma lipid levels at the early stage of ALS. A systematic review was carried out in July 2022. The search equation was "Triglycerides AND amyotrophic lateral sclerosis" and its variants. Four meta-analyses were performed. Four studies were included in the meta-analysis. No significant differences were observed between the lipid levels (total cholesterol, triglycerides, HDL cholesterol, and LDL cholesterol) and the ALS-FRS score at the onset of the disease. Although the number of studies included in this research was low, the results of this meta-analytic study suggest that there is no clear relationship between the symptoms observed in ALS patients and the plasma lipid levels. An increase in research, as well as an expansion of the geographical area, would be of interest.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Triglicerídeos , HDL-Colesterol , LDL-Colesterol
3.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175748

RESUMO

Aging continues to be the main cause of the development of Alzheimer's, although it has been described that certain chronic inflammatory pathologies can negatively influence the progress of dementia, including obesity and hyperlipidemia. In this sense, previous studies have shown a relationship between low-density lipoprotein receptor (LDLR) and the amyloid-beta (Aß) binding activity, one of the main neuropathological features of Alzheimer's disease (AD). LDLR is involved in several processes, including lipid transport, regulation of inflammatory response and lipid metabolism. From this perspective, LDLR-/- mice are a widely accepted animal model for the study of pathologies associated with alterations in lipid metabolism, such as familial hypercholesterolemia, cardiovascular diseases, metabolic syndrome, or early cognitive decline. In this context, we induced hyperlipidemia in LDLR-/- mice after feeding with a high-saturated fatty acid diet (HFD) for 44 weeks. LDLR-/--HFD mice exhibited obesity, hypertriglyceridemia, higher glucose levels, and early hepatic steatosis. In addition, HFD increased plasmatic APOE and ubiquitin 60S levels. These proteins are related to neuronal integrity and health maintenance. In agreement, we detected mild cognitive dysfunctions in mice fed with HFD, whereas LDLR-/--HFD mice showed a more severe and evident affectation. Our data suggest central nervous system dysfunction is associated with a well-established metabolic syndrome. As a late consequence, metabolic syndrome boots many behavioral and pathological alterations recognized in dementia, supporting that the control of metabolic parameters could improve cognitive preservation and prognosis.


Assuntos
Doença de Alzheimer , Hiperlipidemias , Síndrome Metabólica , Camundongos , Animais , Síndrome Metabólica/genética , Síndrome Metabólica/complicações , Dieta Hiperlipídica , Doença de Alzheimer/patologia , Obesidade/complicações , Hiperlipidemias/complicações , Cognição , Ácidos Graxos , Receptores de LDL/genética , Receptores de LDL/metabolismo , Modelos Animais de Doenças
4.
Pharmaceutics ; 15(3)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36986631

RESUMO

Parkinson's disease (PD) is a neurodegenerative pathology, the origin of which is associated with the death of neuronal cells involved in the production of dopamine. The prevalence of PD has increased exponentially. The aim of this review was to describe the novel treatments for PD that are currently under investigation and study and the possible therapeutic targets. The pathophysiology of this disease is based on the formation of alpha-synuclein folds that generate Lewy bodies, which are cytotoxic and reduce dopamine levels. Most pharmacological treatments for PD target alpha-synuclein to reduce the symptoms. These include treatments aimed at reducing the accumulation of alpha-synuclein (epigallocatechin), reducing its clearance via immunotherapy, inhibiting LRRK2, and upregulating cerebrosidase (ambroxol). Parkinson's disease continues to be a pathology of unknown origin that generates a significant social cost for the patients who suffer from it. Although there is still no definitive cure for this disease at present, there are numerous treatments available aimed at reducing the symptomatology of PD in addition to other therapeutic alternatives that are still under investigation. However, the therapeutic approach to this pathology should include a combination of pharmacological and non-pharmacological strategies to maximise outcomes and improve symptomatological control in these patients. It is therefore necessary to delve deeper into the pathophysiology of the disease in order to improve these treatments and therefore the quality of life of the patients.

5.
Biomedicines ; 11(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36672646

RESUMO

Life expectancy has been boosted in recent decades at expenses of increasing the age-associated diseases. Dementia, for its incidence, stands out among the pathologies associated with aging. The exacerbated cognitive deterioration disables people from carrying out their daily lives autonomously and this incidence increases exponentially after 65 years of age. The etiology of dementia is a miscellaneous combination of risk factors that restrain the quality of life of our elderly. In this sense, it has been established that some metabolic pathologies such as obesity and diabetes act as a risk factor for dementia development. In contrast, a high educational level, as well as moderate physical activity, have been shown to be protective factors against cognitive impairment and the development of dementia. In the present study, we have evaluated the metabolic composition of a population between 60-90 years old, mentally healthy and with high academic degrees. After assessing agility in mental state, we have established relationships between their cognitive abilities and their body composition. Our data support that excess body fat is associated with poorer maintenance of cognition, while higher percentages of muscle mass are associated with the best results in the cognitive tests.

6.
Fluids Barriers CNS ; 19(1): 88, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36345028

RESUMO

BACKGROUND: While aging is the main risk factor for Alzheimer´s disease (AD), emerging evidence suggests that metabolic alterations such as type 2 diabetes (T2D) are also major contributors. Indeed, several studies have described a close relationship between AD and T2D with clinical evidence showing that both diseases coexist. A hallmark pathological event in AD is amyloid-ß (Aß) deposition in the brain as either amyloid plaques or around leptomeningeal and cortical arterioles, thus constituting cerebral amyloid angiopathy (CAA). CAA is observed in 85-95% of autopsy cases with AD and it contributes to AD pathology by limiting perivascular drainage of Aß. METHODS: To further explore these alterations when AD and T2D coexist, we have used in vivo multiphoton microscopy to analyze over time the Aß deposition in the form of plaques and CAA in a relevant model of AD (APPswe/PS1dE9) combined with T2D (db/db). We have simultaneously assessed the effects of high-fat diet-induced prediabetes in AD mice. Since both plaques and CAA are implicated in oxidative-stress mediated vascular damage in the brain, as well as in the activation of matrix metalloproteinases (MMP), we have also analyzed oxidative stress by Amplex Red oxidation, MMP activity by DQ™ Gelatin, and vascular functionality. RESULTS: We found that prediabetes accelerates amyloid plaque and CAA deposition, suggesting that initial metabolic alterations may directly affect AD pathology. T2D significantly affects vascular pathology and CAA deposition, which is increased in AD-T2D mice, suggesting that T2D favors vascular accumulation of Aß. Moreover, T2D synergistically contributes to increase CAA mediated oxidative stress and MMP activation, affecting red blood cell velocity. CONCLUSIONS: Our data support the cross-talk between metabolic disease and Aß deposition that affects vascular integrity, ultimately contributing to AD pathology and related functional changes in the brain microvasculature.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Animais , Camundongos , Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Estado Pré-Diabético/complicações , Estado Pré-Diabético/metabolismo , Estado Pré-Diabético/patologia , Angiopatia Amiloide Cerebral/metabolismo , Peptídeos beta-Amiloides/metabolismo , Placa Amiloide/complicações , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Encéfalo/metabolismo , Metaloproteinases da Matriz
7.
Pharmaceutics ; 14(6)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35745693

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia. The pathophysiology of this disease is characterized by the accumulation of amyloid-ß, leading to the formation of senile plaques, and by the intracellular presence of neurofibrillary tangles based on hyperphosphorylated tau protein. In the therapeutic approach to AD, we can identify three important fronts: the approved drugs currently available for the treatment of the disease, which include aducanumab, donepezil, galantamine, rivastigmine, memantine, and a combination of memantine and donepezil; therapies under investigation that work mainly on Aß pathology and tau pathology, and which include γ-secretase inhibitors, ß-secretase inhibitors, α-secretase modulators, aggregation inhibitors, metal interfering drugs, drugs that enhance Aß clearance, inhibitors of tau protein hyperphosphorylation, tau protein aggregation inhibitors, and drugs that promote the clearance of tau, and finally, other alternative therapies designed to improve lifestyle, thus contributing to the prevention of the disease. Therefore, the aim of this review was to analyze and describe current treatments and possible future alternatives in the therapeutic approach to AD.

8.
Biomedicines ; 9(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34944723

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia. It is characterized by cognitive decline and progressive memory loss. The aim of this review was to update the state of knowledge on the pathophysiological mechanisms, diagnostic methods and therapeutic approach to AD. Currently, the amyloid cascade hypothesis remains the leading theory in the pathophysiology of AD. This hypothesis states that amyloid-ß (Aß) deposition triggers a chemical cascade of events leading to the development of AD dementia. The antemortem diagnosis of AD is still based on clinical parameters. Diagnostic procedures in AD include fluid-based biomarkers such as those present in cerebrospinal fluid and plasma or diagnostic imaging methods. Currently, the therapeutic armory available focuses on symptom control and is based on four pillars: pharmacological treatment where acetylcholinesterase inhibitors stand out; pharmacological treatment under investigation which includes drugs focused on the control of Aß pathology and tau hyperphosphorylation; treatment focusing on risk factors such as diabetes; or nonpharmacological treatments aimed at preventing development of the disease or treating symptoms through occupational therapy or psychological help. AD remains a largely unknown disease. Further research is needed to identify new biomarkers and therapies that can prevent progression of the pathology.

9.
J Neuroinflammation ; 17(1): 38, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992349

RESUMO

BACKGROUND: Diabetes is a risk factor for developing Alzheimer's disease (AD); however, the mechanism by which diabetes can promote AD pathology remains unknown. Diabetes results in diverse molecular changes in the brain, including dysregulation of glucose metabolism and loss of cerebrovascular homeostasis. Although these changes have been associated with increased Aß pathology and increased expression of glial activation markers in APPswe/PS1dE9 (APP/PS1) mice, there has been limited characterization, to date, of the neuroinflammatory changes associated with diabetic conditions. METHODS: To more fully elucidate neuroinflammatory changes associated with diabetes that may drive AD pathology, we combined the APP/PS1 mouse model with either high-fat diet (HFD, a model of pre-diabetes), the genetic db/db model of type 2 diabetes, or the streptozotocin (STZ) model of type 1 diabetes. We then used a multiplexed immunoassay to quantify cortical changes in cytokine proteins. RESULTS: Our analysis revealed that pathology associated with either db/db, HFD, or STZ models yielded upregulation of a broad profile of cytokines, including chemokines (e.g., MIP-1α, MIP-1ß, and MCP-1) and pro-inflammatory cytokines, including IL-1α, IFN-γ, and IL-3. Moreover, multivariate partial least squares regression analysis showed that combined diabetic-APP/PS1 models yielded cooperatively enhanced expression of the cytokine profile associated with each diabetic model alone. Finally, in APP/PS1xdb/db mice, we found that circulating levels of Aß1-40, Aß1-42, glucose, and insulin all correlated with cytokine expression in the brain, suggesting a strong relationship between peripheral changes and brain pathology. CONCLUSIONS: Altogether, our multiplexed analysis of cytokines shows that Alzheimer's and diabetic pathologies cooperate to enhance profiles of cytokines reported to be involved in both diseases. Moreover, since many of the identified cytokines promote neuronal injury, Aß and tau pathology, and breakdown of the blood-brain barrier, our data suggest that neuroinflammation may mediate the effects of diabetes on AD pathogenesis. Therefore, strategies targeting neuroinflammatory signaling, as well as metabolic control, may provide a promising strategy for intervening in the development of diabetes-associated AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/farmacologia , Citocinas/biossíntese , Diabetes Mellitus Experimental/metabolismo , Peptídeos beta-Amiloides/sangue , Animais , Glicemia/análise , Córtex Cerebral/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Humanos , Insulina/sangue , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Estreptozocina
10.
Mol Neurobiol ; 55(6): 4896-4910, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28755273

RESUMO

Germinal matrix hemorrhage-intraventricular hemorrhage (GMH-IVH) remains a serious complication in the preterm newborn. The significant increase of survival rates in extremelye preterm newborns has also contributed to increase the absolute number of patients developing GMH-IVH. However, there are relatively few available animal models to understand the underlying mechanisms and peripheral markers or prognostic tools. In order to further characterize central complications and evolution of GMH-IVH, we injected collagenase intraventricularly to P7 CD1 mice and assessed them in the short (P14) and the long term (P70). Early complications at P14 included ventricle enlargement, increased bleeding, and inflammation. These alterations were maintained at P70, when increased tau phosphorylation and decreased neurogenesis were also observed, resulting in impaired learning and memory in these early adult mice. We additionally analyzed peripheral blood biomarkers in both our mouse model and preterm newborns with GMH-IVH. While MMP9 levels were not significantly altered in mice or newborns, reduced gelsolin levels and increased ubiquitin carboxy-terminal hydrolase L1 and tau levels were detected in GMH-IVH patients at birth. A similar profile was observed in our mouse model after hemorrhage. Interestingly, early changes in gelsolin and carboxy-terminal hydrolase L1 levels significantly correlated with the hemorrhage grade in newborns. Altogether, our data support the utility of this animal model to reproduce the central complications and peripheral changes observed in the clinic, and support the consideration of gelsolin, carboxy-terminal hydrolase L1, and tau as feasible biomarkers to predict the development of GMH-IVH.


Assuntos
Encéfalo/patologia , Hemorragia Cerebral Intraventricular/psicologia , Disfunção Cognitiva/psicologia , Aprendizagem/fisiologia , Memória/fisiologia , Destreza Motora/fisiologia , Animais , Biomarcadores/sangue , Encéfalo/metabolismo , Hemorragia Cerebral Intraventricular/metabolismo , Hemorragia Cerebral Intraventricular/patologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Feminino , Inflamação/metabolismo , Inflamação/patologia , Inflamação/psicologia , Masculino , Camundongos , Fosforilação , Proteínas tau/metabolismo
11.
Mol Neurobiol ; 55(7): 6130-6144, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29224179

RESUMO

Type 2 diabetes (T2D) is an important risk factor to suffer dementia, being Alzheimer's disease (AD) as the most common form. Both AD and T2D are closely related to aging and with a growing elderly population it might be of relevance to explore new therapeutic approaches that may slow or prevent central complications associated with metabolic disorders. Therefore, we propose the use of the antidiabetic polypill (PP), a pharmacological cocktail, commonly used by T2D patients that include metformin, aspirin, simvastatin, and an angiotensin-converting enzyme inhibitor. In order to test the effects of PP at the central level, we have long-term treated a new mixed model of AD-T2D, the APP/PS1xdb/db mouse. We have analyzed AD pathological features and the underlying specific characteristics that relate AD and T2D. As expected, metabolic alterations were ameliorated after PP treatment in diabetic mice, supporting a role for PP in maintaining pancreatic activity. At central level, PP reduced T2D-associated brain atrophy, showing both neuronal and synaptic preservation. Tau and amyloid pathologies were also reduced after PP treatment. Furthermore, we observed a reduction of spontaneous central bleeding and inflammation after PP treatment in diabetic mice. As consequence, learning and memory processes were improved after PP treatment in AD, T2D, and AD-T2D mice. Our data provide the basis to further analyze the role of PP, as an alternative or adjuvant, to slow down or delay the central complications associated with T2D and AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Polimedicação , Doença de Alzheimer/sangue , Doença de Alzheimer/complicações , Doença de Alzheimer/metabolismo , Amiloide , Peptídeos beta-Amiloides/metabolismo , Animais , Atrofia , Encéfalo/patologia , Hemorragia Cerebral/complicações , Hemorragia Cerebral/patologia , Disfunção Cognitiva/sangue , Disfunção Cognitiva/complicações , Disfunção Cognitiva/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Humanos , Hipoglicemiantes/farmacologia , Inflamação/patologia , Lipídeos/sangue , Camundongos Transgênicos , Neurônios/patologia , Fosforilação , Sinapses/patologia , Proteínas tau/metabolismo
12.
Mol Neurodegener ; 12(1): 57, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28768549

RESUMO

BACKGROUND: Adverse effects in diabetic mothers offspring (DMO) are a major concern of increasing incidence. Among these, chronic central complications in DMO remain poorly understood, and in extreme cases, diabetes can essentially function as a gestational brain insult. Nevertheless, therapeutic alternatives for DMO are limited. METHODS: Therefore, we have analyzed the central long-term complications in the offspring from CD1 diabetic mothers treated with streptozotozin, as well as the possible reversion of these alterations by insulin administration to neonates. Brain atrophy, neuronal morphology, tau phosphorylation, proliferation and neurogenesis were assessed in the short term (P7) and in the early adulthood (10 weeks) and cognitive function was also analyzed in the long-term. RESULTS: Central complications in DMO were still detected in the adulthood, including cortical and hippocampal thinning due to synaptic loss and neuronal simplification, increased tau hyperphosphorylation, and diminished cell proliferation and neurogenesis. Additionally, maternal diabetes increased the long-term susceptibility to spontaneous central bleeding, inflammation and cognition impairment in the offspring. On the other hand, intracerebroventricular insulin administration to neonates significantly reduced observed alterations. Moreover, non-invasive intranasal insulin reversed central atrophy and tau hyperphosphorylation, and rescued central proliferation and neurogenesis. Vascular damage, inflammation and cognitive alterations were also comparable to their counterparts born to nondiabetic mice, supporting the utility of this pathway to access the central nervous system. CONCLUSIONS: Our data underlie the long-term effects of central complications in DMO. Moreover, observed improvement after insulin treatment opens the door to therapeutic alternatives for children who are exposed to poorly controlled gestational diabetes, and who may benefit from more individualized treatments.


Assuntos
Encéfalo/patologia , Disfunção Cognitiva/patologia , Diabetes Gestacional/patologia , Insulina/metabolismo , Animais , Atrofia/patologia , Cognição/fisiologia , Feminino , Masculino , Camundongos , Mães , Gravidez
13.
Mol Neurobiol ; 54(6): 4696-4704, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27443159

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia; however, available treatments have had limited success. Therefore AD patients are in tremendous need of new pharmacological approaches that may delay or slow the progression of the disease. In addition to the classical neuropathological features, immunological and inflammatory processes are also involved in AD pathogenesis. Naturally occurring compounds, such as Mangifera indica Linn (MGF) extracts have previously been shown to significantly reduce peripheral inflammatory processes. In order to explore the role of MGF in AD central pathology, we have orally treated APP/PS1 mice for 22 weeks. While MGF did not affect amyloid pathology, tau hyperphosphorylation was significantly reduced in the cortex and hippocampus. Also, inflammatory processes, measured by microglia and astrocyte burdens, were diminished in MGF-treated mice. Moreover, neuronal morphological alterations, such as abnormal neurite curvature and dystrophies, highly increased in APP/PS1 mice, were significantly ameliorated by long-term MGF treatment. Reduction of all these pathological features were accompanied by compelling improvements of episodic and spatial memory in APP/PS1 mice treated with MGF. Altogether our data suggest that MGF may provide a useful tool to target different aspects of AD pathology and could lead to more effective future therapeutic or preventive strategies.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/patologia , Extratos Vegetais/uso terapêutico , Presenilina-1/metabolismo , Xantonas/uso terapêutico , Doença de Alzheimer/complicações , Amiloide/metabolismo , Animais , Transtornos Cognitivos/complicações , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/patologia , Mangifera , Camundongos , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neuritos/patologia , Extratos Vegetais/farmacologia , Xantonas/farmacologia , Proteínas tau/metabolismo
14.
Mol Neurobiol ; 54(5): 3428-3438, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27177549

RESUMO

Age remains the main risk factor for developing Alzheimer's disease (AD) although certain metabolic alterations, including prediabetes and type 2 diabetes (T2D), may also increase this risk. In order to understand this relationship, we have studied an AD-prediabetes mouse model (APP/PS1) with severe hyperinsulinemia induced by long-term high fat diet (HFD), and an AD-T2D model, generated by crossing APP/PS1 and db/db mice (APP/PS1xdb/db). In both, prediabetic and diabetic AD mice, we have analyzed underlying neuronal pathology and synaptic loss. At 26 weeks of age, when both pathologies were clearly established, we observed severe brain atrophy in APP/PS1xdb/db animals as well as cortical thinning, accompanied by increased caspase activity. Reduced senile plaque burden and elevated soluble Aß40 and 42 levels were observed in AD-T2D mice. Further assessment revealed a significant increase of neurite curvature in prediabetic-AD mice, and this effect was worsened in AD-T2D animals. Synaptic density loss, analyzed by array tomography, revealed a synergistic effect between T2D and AD, whereas an intermediate state was observed, once more, in prediabetic-AD mice. Altogether, our data suggest that early prediabetic hyperinsulinemia may exacerbate AD pathology, and that fully established T2D clearly worsens these effects. Therefore, it is feasible that early detection of prediabetic state and strict metabolic control could slow or delay progression of AD-associated neuropathological features.


Assuntos
Doença de Alzheimer/patologia , Diabetes Mellitus Tipo 2/patologia , Neurônios/patologia , Estado Pré-Diabético/patologia , Sinapses/patologia , Doença de Alzheimer/complicações , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Atrofia/patologia , Caspases/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Camundongos Transgênicos , Neuritos/metabolismo , Neurônios/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Estado Pré-Diabético/complicações , Estado Pré-Diabético/metabolismo , Presenilina-1/metabolismo , Sinapses/metabolismo
15.
Eur J Neurosci ; 44(12): 3056-3066, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27748574

RESUMO

Alzheimer's disease is characterized by the presence of aggregates of amyloid beta (Aß) in senile plaques and tau in neurofibrillary tangles, as well as marked neuron and synapse loss. Of these pathological changes, synapse loss correlates most strongly with cognitive decline. Synapse loss occurs prominently around plaques due to accumulations of oligomeric Aß. Recent evidence suggests that tau may also play a role in synapse loss but the interactions of Aß and tau in synapse loss remain to be determined. In this study, we generated a novel transgenic mouse line, the APP/PS1/rTg21221 line, by crossing APP/PS1 mice, which develop Aß-plaques and synapse loss, with rTg21221 mice, which overexpress wild-type human tau. When compared to the APP/PS1 mice without human tau, the cross-sectional area of ThioS+ dense core plaques was increased by ~50%. Along with increased plaque size, we observed an increase in plaque-associated dystrophic neurites containing misfolded tau, but there was no exacerbation of neurite curvature or local neuron loss around plaques. Array tomography analysis similarly revealed no worsening of synapse loss around plaques, and no change in the accumulation of Aß at synapses. Together, these results indicate that adding human wild-type tau exacerbates plaque pathology and neurite deformation but does not exacerbate plaque-associated synapse loss.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Placa Amiloide/metabolismo , Sinapses/metabolismo , Sinapses/patologia , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Astrócitos/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Fosforilação , Presenilina-1/genética , Presenilina-1/metabolismo , Proteínas tau/genética
16.
Mol Neurobiol ; 53(4): 2685-97, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26156287

RESUMO

Alzheimer's disease (AD) and vascular dementia (VaD) are the most common causes of dementia, and borderlines are blurred in many cases. Aging remains the main risk factor to suffer dementia; however, epidemiological studies reveal that diabetes may also predispose to suffer AD. In order to further study this relationship, we have induced hypoinsulinemic diabetes to APPswe/PS1dE9 (APP/PS1) mice, a classical model of AD. APP/PS1 mice received streptozotocin (STZ) ip at 18 weeks of age, when AD pathology is not yet established in this animal model. Cognition was evaluated at 26 weeks of age in the Morris water maze and the new object discrimination tests. We observed that STZ-induced episodic and working memory impairment was significantly worsened in APP/PS1 mice. Postmortem assessment included brain atrophy, amyloid-beta and tau pathology, spontaneous bleeding, and increased central inflammation. Interestingly, in APP/PS1-STZ diabetic mice, we detected a shift in Aß soluble/insoluble levels, towards more toxic soluble species. Phospho-tau levels were also increased in APP/PS1-STZ mice, accompanied by an exacerbated inflammatory process, both in the close proximity to senile plaque (SP) and in SP-free areas. The presence of hemorrhages was significantly higher in APP/PS1-STZ mice, and although pericytes and endothelium were only partially affected, it remains possible that blood-brain barrier alterations underlie observed pathological features. Our data support the implication of the diabetic process in AD and VaD, and it is feasible that improving metabolic control could delay observed central pathology.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Hemorragia Cerebral/etiologia , Transtornos Cognitivos/etiologia , Diabetes Mellitus Experimental/complicações , Presenilina-1/metabolismo , Amiloide/metabolismo , Animais , Atrofia , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Hemorragia Cerebral/patologia , Hemorragia Cerebral/fisiopatologia , Transtornos Cognitivos/patologia , Transtornos Cognitivos/fisiopatologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Insulisina/metabolismo , Memória , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Atividade Motora , Neprilisina/metabolismo , Estreptozocina , Proteínas tau/metabolismo
17.
Psychoneuroendocrinology ; 65: 15-25, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26708068

RESUMO

Type 2 diabetes (T2D) is a well-characterized risk factor for Alzheimer's disease (AD), the most common cause of dementia. Since both, T2D and dementia are closely related to aging and they chronically coexist in elderly patients, it is of particular relevance to know whether long-term evolution of T2D and dementia interfere with each other years after the onset of the diseases. In order to elucidate this interaction, we have characterized a mixed model of T2D and AD, the APP/PS1xdb/db mouse, at 36 weeks of age, when both diseases have long coexisted and evolved. In aged APP/PS1xdb/db mice we observed dysfunctional metabolic control, when compared with diabetic mice alone, suggesting that AD may also contribute to T2D pathology in the long-term. Learning and memory were severely impaired in APP/PS1xdb/db mice, accompanied by reduced cortical size, neuronal branching simplification and reduction of dendritic spine density. Increased tau phosphorylation was also observed in old APP/PS1xdb/db mice. A shift in amyloid-ß (Aß) pathology was detected, and while insoluble Aß was reduced, more toxic soluble species were favoured. Microglia burden was significantly increased in the proximity of senile plaques and an overall increase of spontaneous haemorrhages was also observed in APP/PS1xdb/db mice, suggesting a possible disruption of the blood brain barrier in the mixed model. It is therefore feasible that strict metabolic control may slow or delay central complications when T2D and dementia coexist in the long term.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Fatores Etários , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Comorbidade , Diabetes Mellitus Experimental/psicologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/psicologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos , Microglia/metabolismo , Microglia/patologia , Fosforilação , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Proteínas tau/metabolismo
18.
Psychoneuroendocrinology ; 62: 69-79, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26254770

RESUMO

Aging remains the main risk factor to suffer Alzheimer's disease (AD), though epidemiological studies also support that type 2 diabetes (T2D) is a major contributor. In order to explore the close relationship between both pathologies we have developed an animal model presenting both AD and T2D, by crossing APP/PS1 mice (AD model) with db/db mice (T2D model). We traced metabolic and cognitive evolution before T2D or AD pathology is present (4 weeks of age), when T2D has debuted but no senile plaques are present (14 weeks of age) and when both pathologies are well established (26 weeks of age). APP/PS1xdb/db mice showed an age-dependent synergistic effect between T2D and AD. Significant brain atrophy and tau pathology were detected in the cortex by 14 weeks, that spread to the hippocampus by 26 weeks of age. Severe cognitive impairment was also detected as soon as at 14 weeks of age. Interestingly, in APP/PS1xdb/db mice we observed a shift in Aß soluble/insoluble levels, and whereas more toxic soluble species were favoured, senile plaques (SP) were reduced. An overall increase of microglia activation was observed in APP/PS1xdb/db mice. We also found exacerbated hemorrhagic burden in APP/PS1xdbd/db mice, suggesting that blood brain barrier alterations may be responsible for the early pathological features observed. Moreover, metabolic parameters can predict many of these alterations, supporting a role for T2D in AD pathology. This new model provides a relevant tool to further explore the relationship between T2D, AD and vascular implications, offering the possibility to assess therapeutic approaches, that by improving T2D metabolic control could delay or prevent AD pathology.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Transtornos Cerebrovasculares/patologia , Diabetes Mellitus Tipo 2/patologia , Doença de Alzheimer/complicações , Doença de Alzheimer/metabolismo , Animais , Atrofia/metabolismo , Atrofia/patologia , Encéfalo/metabolismo , Transtornos Cerebrovasculares/complicações , Transtornos Cerebrovasculares/metabolismo , Cognição/fisiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Proteínas tau/metabolismo
20.
Psychoneuroendocrinology ; 48: 123-35, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24998414

RESUMO

Age remains the main risk factor for developing Alzheimer's disease (AD) although certain metabolic alterations, including prediabetes and hyperinsulinemia, also increase this risk. We present a mouse model of AD (APPswe/PS1dE9 mouse) with severe hyperinsulinemia induced by long-term high fat diet (HFD) treatment. After 23 weeks on HFD learning and memory processes were compromised. We observed a significant increase in tau hyperphosphorylation and Aß pathology, including Aß levels and amyloid burden. Microglia activation was also significantly increased in HFD-treated mice, both in close proximity to and far from senile plaques. Insulin degrading enzyme and neprilysin levels were not affected, suggesting that Aß degradation pathways were preserved, whereas we detected an increase in spontaneous cortical bleeding that could underlay an impairment of Aß interstitial fluid drainage, contributing to the increase in Aß deposition in APP/PS1-HFD mice. Altogether our data suggest that early hyperinsulinemia is enough to exacerbate AD pathology observed in APP/PS1 mice, and supports the role of insulin-resistance therapies to stop or delay central complications associated.


Assuntos
Doença de Alzheimer/complicações , Precursor de Proteína beta-Amiloide/genética , Angiopatias Diabéticas/etiologia , Estado Pré-Diabético/complicações , Estado Pré-Diabético/fisiopatologia , Presenilina-1/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/fisiopatologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Hiperinsulinismo/etiologia , Hiperinsulinismo/metabolismo , Resistência à Insulina , Aprendizagem em Labirinto , Memória , Camundongos , Camundongos Transgênicos , Estado Pré-Diabético/metabolismo , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...